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Abstract

The Global Precipitation Mission, a satellite project under consideration as a follow-on

to the Tropical Rainfall Measuring Mission (TRMM) by the National Aeronautics and Space

Agency (NASA) in the United States, the National Space Development Agency (NASDA) in

Japan, and other international partners, comprises an improved TRMM-like satellite and a

constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall

measurements at 3-hour intervals. The success of this concept relies on the merits of rainfall

estimates derived from passive microwave radiometers. This article offers a proof-of-concept

demonstration of the benefits of using rainfall and total precipitable water (TPW) information

derived from such instruments in global data assimilation with observations from the TRMM

Microwave Imager (TMI) and 2 Special Sensor Microwave/Imager (SSM/I) instruments.

Global analyses that optimally combine observations from diverse sources with physical

models of atmospheric and land processes can provide a comprehensive description of the climate

systems. Currently, such data analyses contain significant errors in primary hydrological fields

such as precipitation and evaporation, especially in the tropics. We show that assimilating the 6-h

averaged TMI and SSM/I surface rainrate and TPW retrievals improves not only the hydrological

cycle but also key climate parameters such as clouds, radiation, and the upper tropospheric

moisture in the analysis produced by the Goddard Earth Observing System (GEOS) Data

Assimilation System, as verified against radiation measurements by the Clouds and the Earth's

Radiant Energy System (CERES) instrument and brightness temperature observations by the

TIROS Operational Vertical Sounder (TOVS) instruments.

Typically, rainfall assimilation improves clouds and radiation in areas of active

convection, as well as the latent heating and large-scale motions in the tropics, while TPW

assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions.

Ensemble forecasts initialized with analyses that incorporate TMI and SSM]I rainfall and TPW

data also yield better short-range predictions Of geopotential heights, winds, and precipitation in

the tropics. This study offers a compelling illustration of the potential of using rainfall and TPW

information derived from passive microwave instruments to significantly improve the quality of

4-dimensional global datasets for climate analysis and weather forecasting applications.



1. Introduction

Understanding the Earth's climate and how it responds to climate perturbations relies on

what we know about how atmospheric moisture, clouds, latent heating, and the large-scale

circulation vary with changing climatic conditions. The physical process that links these key

climate elements is precipitation, which directly affects the generation of clouds and large-scale

motions and thus indirectly influences the distribution of moisture and the greenhouse warming

in the earth's atmosphere. A quantitative understanding of these precipitation-related processes

and their dependence on the atmospheric state is crucial to developing the capability to model

and predict climate change with confidence. The present-day knowledge of rainfall distribution

and variability is very limited, especially over the oceans and in the tropics. Space-borne rainfall

sensors are essential tools for advancing our understanding of the earth's water and energy cycles.

The Tropical Rainfall Measuring Mission (TRMM) is a joint satellite project between the

National Aeronautics and Space Agency (NASA) of the United States and the National Space

Development Agency (NASDA) of Japan. TRMM was designed to measure rainfall in the tropics

and subtropics using a precipitation radar (PR) and the TRMM Microwave Imager (TMI)

(TRMM 1996). Coincident measurements by the PR and TMI provide cross-validation to improve

the accuracy of rainrate estimation and physical interpretations of radiometer data. The TRMM

satellite was launched into a non-sun-synchronous orbit of inclination of 35 ° on Thanksgiving

Day in 1997. The TMI is similar in design to the Special Sensor Microwave/Imager (SSM/I)

instrument but with an additional 10.65 GHz channel and a slightly modified water vapor

channel. The TMI rainfall and total precipitable water (TPW) observations may be combined with

similar retrievals derived from the SSM/I instruments aboard the sun-synchronous, polar-orbiting

satellites operated by the Defense Meteorological Satellite Program (DMSP) to improve the

spatial and temporal coverage and reduce sampling errors. But the combined TMI and the

present-day SSM/I observations do not fully capture the rapid temporal and spatial variations of

the precipitation process. Currently in the planning stage is a Global Precipitation Mission

(GPM), a multi-national satellite project based on an improved TRMM-like satellite and a

constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall

coverage (75°S to 75°N) at 3-hour intervals. The success of this GPM concept relies upon the
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merits of precipitationestimatesderivedfrom passivemicrowaveradiometers.

In this proof-of-conceptstudywe seekto demonstratethe benefitsof using rainfall and

TPW retrievalsderivedfrom passivemicrowaveinstrumentsin global dataassimilation,even

with the limited coverageafforded by three satellites. Four-dimensional(4D) global data

assimilationthat optimallycombinesobservationsfrom diversesourceswith physicalmodelsof

theearthsystemaimsto provide time-continuous,physically-consistent,griddeddatasetsuseful

for studyingtheinteractionsbetweenthe hydrologicalcycle, atmosphericdynamics,andclimate

variability. To do so, the assimilation must be quantitatively accurate in depicting the

precipitation intensity and variability since many key climate parameterssuchas clouds and

radiation are directly affectedby the precil_itationprocess.At the presenttime, the utility of

globalreanalysesproducedusingfixed assimilationsystemsis limited by significanterrors in the

primary hydrological fields suchasprecipitation,evaporation,especiallyin the tropics, where

conventionalobservationsaresparse(WCRP 1998,Newmanet al. 2000).

Operationalcenterscurrentlydonot useprecipitationdatato produceforecastsor analysis

products.However,therehavebeenabundantstudiesshowingthat assimilationof satellite-based

rainfall estimatescanimprovenumericalweatherpredictionand dataanalysis(e.g.,Krishnamurti

et al. 1984,1991,1993;Donner1988;Purl and Miller 1990;Turpeinenet al. 1990;Kasaharaet

al. 1994,Zupanski and Mesinger 1995,Treadon 1996,Tsuyuki 1996a,1996b, 1997).Most

investigationsfocusedonusingprecipitationdatato improveshort-rangeforecastsand thefirst-

guessfieldsusedin dataanalyses.But, in thepresenceof systematicerrors in the forecastmodel,

forecast improvementsmay not be indicative of the extent of the improvementsthat can be

achievedin thetime-averagedassimilationfields or in termsof the quality of reanalysesas4D

climatedatasets.In two separatestudies- oneusingSSM/I-derivedrainfall andTPW retrievals

availableprior to the TRMM launchandthe otherusingTMI data,Hou et al. (2000a,2000b)

showed that assimilating the 6-h averagedtropical rainfall and TPW retrievals from these

instrumentsimprovesnot only short-rangeforecastsbut is even more effective in reducing

systematicerrors in the hydrological cycle and key climate parameterssuch as clouds and

atmosphericradiation in the assimilateddatasetproducedby the GoddardEarth Observing

System(GEOS) Data Assimilation System(DAS). Thesestudiesshow that physically-based

rainfall estimatesderivedfrom microwaveinstruments,despitesomeuncertaintyin the retrieved
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intensity andthe limited observationsavailablein a 6-h analysiswindow, do providevaluable

information that canbeusedto goodadvantagein dataassimilation.

In this article we show the benefits of increaseddata coveragein assimilating the

combinedrainfall andTPW retrievalsfrom the TMI and2 SSM/I instrumentsaboardthe DMSP

F13 and FI4 satellites. The work demonstrates the potential of using these data types to improve

forecasts and generate analyses capable of providing quantitatively accurate descriptions of

rainfall and latent heating variations for studying the role of the global water cycle in climate.

In Sec. 2, we discuss the need for better precipitation analyses and more robust metrics for

assessing the consequence of inaccurate rainfall in global analyses. Section 3 describes the

precipitation and TPW retrieval products used in the study. Section 4 describes the rainfall/TPW

assimilation algorithm and experiments. Section 5 analyzes the impact of rainfall/TPW

assimilation on the time-averaged fields in the GEOS analysis. Section 6 discusses the impact

on short-range forecasts. Section 7 summarizes the main findings and discusses future

developments.

2. Background

Global reanalyses currently yield precipitation estimates that differ quantitatively from

each other and from observation-based estimates such as the combined satellite-gauge rainrates

from the Global Precipitation Climatology Project (GPCP) (Adler et al. 1996, Huffman et al.

1997) or the combined rainrates derived from the TRMM and geostationary satellites (Sorooshian

et al. 1999). The discrepancies are especially pronounced in the tropics, where the conventional

observation network is sparse and rainfall analyses are typically model-generated quantities

sensitive to the physical parameterization scheme employed by the assimilation system. However,

the present-day rainfall observations also suffer from uncertainties in retrieval algorithms and

inadequate sampling. They provide but an estimate of the truth. The lack of definitive rainrate

estimates has hindered efforts to quantify precipitation errors in global analyses and obscured the

penalty for incurring such errors. To make progress, we need to establish, if possible, that the

observed precipitation, though imperfect, is, in fact, more accurate than the model-generated

estimates. We also need to make use of independent observations with higher accuracies to
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quantifythe errors in assimilateddataassociatedwith precipitationerrors.

Basedon physical principles and observations, we know that many key climate parameters

such as clouds and radiation are directly linked to precipitation processes. For instance, satellite

observations of the 1987-88 El Nifio Southern Oscillation (ENSO) event show that the change

in the July-mean GPCP precipitation in the tropics is spatially correlated (with coefficients greater

than 0.7) with changes in the high-cloud fraction from the International Satellite Cloud

Climatology Project (ISCCP) and the top-of-the-atmosphere (TOA) radiative fluxes from the

Earth Radiation Budget Experiment (ERBE) (see TRMM Data Assimilation at NASA Goddard

2000). Regions of enhanced convection are associated with increased cloud cover, less shortwave

heating and less outgoing longwave radiation (OLR). The close links between these fields suggest

that radiation measurements from space-borne instruments can provide an indirect but effective

means for estimating precipitation errors in global analyses, given that uncertainties in radiation

measurements are generally much less than that in satellite-based precipitation estimates.

The metrics we use in this study to assess the impact of rainfall/TPW assimilation on the

quality of the GEOS analysis consist of: (i) evaluating the OLR and outgoing shortwave radiation

(OSR) from the assimilation against measurements by the Clouds and the Earth's Radiant Energy

System (CERES) instrument aboard the TRMM satellite, and (ii) comparing the computed

synthetic brightness temperatures for TIROS Operational Vertical Sounder (TOVS) spectral

channels that are sensitive to moisture with TOVS observations. The CERES/TRMM and TOVS

observations can both serve as independent data for verification since neither was assimilated in

the GEOS DAS. In terms of the monthly-mean tropical precipitation, current reanalyses all have

order-one discrepancies from the combined satellite-gauge GPCP estimate (see TRMM Data

Assimilation at NASA Goddard 2000). These discrepancies are typically of the size as the

signals. In Sec. 5 we show that as we assimilate the TMI and SSM/I rainrates and TPW data to

bring the tropical precipitation in the GEOS analysis into better quantitative agreement with the

GPCP estimate, errors in the TOA radiative fluxes w.r.t, the CERES measurements become

substantially reduced. This indicates that the satellite-based precipitation estimates are more

consistent with the CERES/TRMM radiation measurements than the predominantly model-

generated rainfall analysis without the benefit of satellite precipitation data.



3. TMI and SSM/I-Derived Precipitation and TPW Retrievals

a. GPROF TMI and SSM/I precipitation retrievals

The surface precipitation data used in this study are physical retrievals from TMI and

SSM/I radiance measurements using the Goddard Profiling (GPROF) Algorithm, which derives

rainrates and precipitation vertical structure from microwave radiometer and/or radar

measurements (Kummerow et al. 1996, Olson et al. 1996) using a Bayesian technique similar to

the algorithms developed by Pierdicca et al. (1996) and Haddad et al. (1997). The GPROF

scheme uses a database of simulated precipitation vertical profiles and the associated microwave

radiances generated by cloud-resolving model coupled to a radiative transfer code. This database

serves as a "reference library" to which actual sensor-observed radiances can be compared. Given

a set of multichannel radiance observations from a particular sensor, the entire library of

simulated radiances is scanned; the "retrieved" profile is a composite using profiles stored in

database which correspond to simulated radiances consistent with the observed radiances.

The TMI and SSM/I rain estimates are derived from essentially the same algorithm, but

modified for the different channel selection and resolution of the two instruments. Because the

TMI has greater than twice the spatial resolution of the SSM]I, rain estimates from TMI exhibit

a greater dynamic range than those from SSM]I; however, space-time average estimates from

SSM/I and TMI are usually within about 10%. Comparison of zonally-averaged monthly-mean

rainrates from SSM]I (DMSP FI3 and F14) and TMI at 2.5 ° latitude resolution shows that the

TMI and SSMI[I rainrates are generally very close, with the peak rainrates associated with the

Inter-Tropical Convergence Zone differing by at most 10%, despite the different diurnal sampling

of the SSM/I and TMI over a month. For assimilation into the GEOS DAS, the single-footprint,

instantaneous GPROF TMI and SSM/I surface rainrates are horizontally averaged to 2 ° latitude

by 2.5 ° longitude grids, then time-averaged over 6 hours centered at analysis times (0000, 0600,

1200, 1800 UTC).

The random error of each GPROF-retrieved rainrate may be estimated by evaluating the

local variance of rainrates in the model database about the retrieved rainrate (Olson et al. 1996).

According to this method, the random error of single-footprint, instantaneous rainfall rates is
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estimatedto be -100% of the retrieved rainrate. But the instantaneous gridded rainrates have

relatively low random error since the pixels completely cover a 2° x 2.5 ° gridbox in a full-view

overpass. Over each 2° x 2.5 ° gridbox, approximately 1000 single-footprint TMI estimates are

used to compute the area-average, instantaneous rainrate. Following the analysis of Bell et al.

(1990), the corresponding random error of the gridbox-averaged TMI rainrate is about 20%,

without accounting for possible inte-footprint correlations of errors. Undersampling of the

time-average rainrate over each 6-h analysis interval contributes additional error, approximately

20-60%, depending upon the number of TMI overpasses within the interval. One complication

in this estimate is that the relative (percent) random error varies roughly as the inverse square

root of the rainrate, so that estimates of relative random errors significantly worse in light rain

areas, but better in heavy rain areas (Huffman 1997).

The global bias is not yet established for GPROF rainfall estimates since most regions

lack the necessary validation data and no statistical model has been developed to estimate bias

from other parameters. A recent intercomparison of TMI GPROF and coincident space-borne

Precipitation Radar estimates of rainrate suggests biases on the order of 30% over land and ocean

in terms of the annual mean (Kummerow et al. 2000). In this study we assimilate the 6-h gridded

TMI and SSM/I surface rainrates between 30°S and 30°N over both the oceans and land.

Although microwave-based rainfall estimates tend to be less accurate over land, our results will

show that assimilating the GPROF rainrates over land greatly improves precipitation over

continents w.r.t, the gauge-based GPCP estimates.

b. Wentz retrievals of total precipitable water

The TPW data are retrievals from TMI and SSM/I observations over oceans using

essentially the same algorithms (Wentz 1997), except for adjustments to account for small

differences in GHz between the TMI and SSM/I channels and the TMI water vapor being

measured at 21 GHz rather than 22.235 GHz as in SSM]I. The TMI and SSM]I TPW data are

available online from the Remote Sensing System (RSS 2000) in the form of maps of ascending

and descending orbit segments at a pixel resolution of 25 km. The rms accuracy of the SSM/I

TPW retrieval is about 1 mm, with the accuracy of the TMI TPW retrieval expected to be
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comparableor better.Thesehigh-resolutiondatawith goodquality flags arethenprocessedto

produce6-hour average2° x 2.5 ° gridded TPW data for ingestion into the GEOS DAS.

4. Assimilation Methodology and Experiments

The algorithm we use to assimilate surface rainfall and TPW retrievals in the GEOS DAS

is a variational procedure based on a 6-h time integration of a column version of the GEOS moist

physics with dynamical and other physical tendencies prescribed from a preliminary 3-h

assimilation using the full GEOS DAS with conventional observations. The general procedure

modifies vertical moisture and temperature profiles within observational and model uncertainties

to minimize the least-square differences between the observed TPW and rainrates and those

produced by the column model over the 6-h analysis window. The minimization yields constant

moisture and temperature analysis tendencies, which are applied as additional forcing within the

Incremental Analysis Update (IAU) framework of the GEOS DAS in the final 6-h assimilation

cycle. Dynamic consistency is achieved through model integration during the assimilation cycle.

Details of this "1 + 1" space-time dimension rainfall/TPW assimilation procedure and the basic

features of the GEOS DAS are described in Hou et al. (2000a), with further improvements

described in Hou et al. (2000b).

This I+ID assimilation procedure, in its generalization to four dimensions, is related to

the standard 4D variational assimilation but uses analysis increments instead of initial conditions

as the control variable. In doing so, it effectively imposes the forecast model as a weak constraint

in a manner similar to the variational continuous assimilation techniques (Derber 1989, Zupanski

1997). However, conceptually, the 1 +ID scheme differs from most existing rainfall assimilation

procedures in one important aspect - that it assimilates the time-averaged instead of instantaneous

rainrates. The physical rationale is that the parameterized convection with implicit quasi-

equilibrium assumptions is more consistent with a rainfall generation process that senses the

atmospheric sounding over convective time scales of a few hours rather than instantaneous

profiles. In practice, there is not sufficient rainfall observation to resolve the convective life

cycles in the tropics, in the current implementation we use the 6-h analysis window for the

averaging time as with all other data types used in the GEOS DAS.
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An optimal use of TMI and SSMI rainfall and TPW observationsin dataassimilation

requiresdetailedknowledgeof observationandforecastmodelerrors,which areboth areasof

active investigation.For a simple demonstrationof the benefitsof using theseobservationsin

assimilation,we will presentresultsfrom a sub-optimalapplicationof thesedatawithout using

error specifications,as donein Hou et al. (2000b).The simplifying assumptionsare: (i) the

observedrainfall andTPW estimatesaremuchmorereliablethanmodel-generatedestimates,(ii)

uncertaintiesin the moistureanalysisaremuch larger thanand uncorrelatedwith errors in the

temperaturefield, and (iii) the moistureanalysisincrementhasa prescribedvertically-decaying

structurethatmimicstheJacobianof the6-hmeanprecipitationw.r.t, moistureperturbationsand

anamplitudeconstrainednot to exceedthe 6-h forecasterror std dev againstradiosondedataat

anygivenlevel (seeHou, 2000b,for details).Under theseconditionsthe general l+lD scheme

reducesto a two-parameterestimationproblem to accommodatethe 2 piecesof information

providedby precipitationandTPWobservations.This simplified 1+1D schemesharesa number

of key assumptionswith the physicalinitialization scheme(Krishnamurtiet al. 1991, 1993)but

differs in oneimportantrespect- it is implementedin theGEOSDAS to directly constrainthe

time-averagerainrateandTPW overa 6-h analysiswindow, whereasphysical initialization is

typically usedto improvethe first guessby nudgingthe precipitationin the previousanalysis

cycle (Treadon1996).

We performeda seriesof parallelassimilationexperimentsfor two periods:one from 1

December1997to 31January1998,andthe other from 1 Juneto 30June 1998.The control is

a standardGEOSassimilationwith conventionalobservationsthatextendsfrom 1 December1997

through30June1998.In four rainfall/TPWexperimentswe assimilatedin eachcase,in addition

to conventionalobservations,either the 6-h averagedTMI rainrates(TMI PCPassimilation),or

TMI rainratesandTPW (TMI PCP+TPWassimilation),or TMI andSSM/I rainrates(TMI+SSMI

PCPassimilation),or TMI andSSMI/I rainratesandTPW(TMI+SSMI PCP+TPWassimilation).

Resultsfrom the TMI PCPandTMI PCP+TPWexperimentshavebeenreportedseparatelyin

Hou et al. (2000b).The presentarticle focuseson the two experimentsusing both TMI and

SSM/I observations.
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5. Impact on Time-Mean Fields

a. Surface precipitation

The impact of assimilating the 6-h averaged TMI and SSM]I rainrates on the GEOS

precipitation field is illustrated in Fig. 1 for 0000 UTC on 23 January 1998. Figure la shows the

combined 6-h, 2 ° x 2.5 ° gridded GPROF rainrates derived from the TMI and DMSP F13 and FI4

SSM/I instruments. At this temporal and spatial resolution, there is some overlap between

observations from the polar-orbiting DMSP satellites and the TRMM satellite at 35 ° orbit

inclination. Errors in the assimilated tropical rainrates in the GEOS control, TMI+SSMI PCP

assimilation, and TMI+SSMI PCP+TPW assimilation are shown in Figs. lb, lc, and ld,

respectively. Given at the top of each panel are the anomaly pattern correlation (AC), bias, and

error std dev w.r.t, the combined TMI and SSM/I estimates, with the percentage changes relative

to the GEOS control given in parentheses. (Note: the anomaly correlation refers to pattern

correlation with the tropical mean removed.)

The statistics in Fig. 1 serve only as an illustration, as there is considerable variability in

these 6-h error statsitcis. Typically, rainfall assimilation increases the pattern correlation from

around 0.2 to 0.45-0.6 and reduces the error std dev by 15-20%. The addition of TPW data

further increases the correlation to 0.6-0.7 and reduces std dev by 20-30% relative to the control.

The 1+ 1D assimilation algorithm is more effective in reducing the precipitation intensity

than enhancing it in the GEOS DAS, leading to the negative tropical-mean biases in Figs. lc and

ld, even though the errors are reduced locally. A plausible explanation for this asymmetry is that

enhancing precipitation requires moistening of the lower troposphere, yet the high relative

humidity in the tropical boundary layer limits, through saturation, the extent to which moisture

analysis increments can moisten the low levels, while permitting a greater degree of drying to

reduce precipitation.

The impact of rainfall and TPW assimilation on the monthly-mean tropical precipitation

is summarized in Table 1 for January and June 1998, as verified against the gridded GPCP

monthly-mean satellite-gauge estimate produced by Huffman et al. (1997). Results show that

assimilating TMI and SSM/I rainrates increases the anomaly correlation from the 0.60-0.65 range
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to 0.85-0.89,andreducesthe error std dev by 41-48%. Figure 2 shows the improved precipitation

fields for January 1998. Although rainrates derived from microwave channels tend to be less

accurate over land than over oceans, Fig. 2c shows that assimilating the GPROF rainrates

improves precipitation not only over oceans but over land as well. Figure 2d shows that using

TPW data in conjunction with rainrate estimates yields further improvements. Similar results in

terms of the overall impact of PCP+TPW assimilation for June 1998 is shown in the top right

panel of Fig. 4.

b. Total precipitable water

The monthly-mean spatial statistics in Table 2 show that the I+ID scheme is very

effective in reducing errors in the assimilated TPW field. It virtually eliminates the monthly-mean

spatial bias and reduces the error std dev by 75-80%. Assimilating TMI and SSM/I rainrates

without TPW data also has a positive impact on TPW, mainly in reducing the tropical-mean bias.

The improvements in the assimilated tropical TPW from PCP+TPW assimilation is shown in Fig.

4 (upper middle panels) for June 1998 using the combined gridded TMI+SSM/I Wentz retrievals

as verification.

c. Verification against CERES/TRMM top-of-the-atmosphere radiation measurements

The TOA radiative flux measurements used in this study are the CERES]TRMM ERBE-

like ES-4 2.5 ° x 2.5" gridded daily products interpolated onto the 2 ° x 2.5 ° GEOS model grids.

For the tropics, the monthly-averaged bias is estimated to be + 1.5 Wm -2 for longwave (LW)

fluxes and +3 Wm 2 for shortwave (SW) fluxes, and the std dev is less than 3 Wm -2 for LW and

8.5 Wm -2 for SW (CERES/TRMM 1998). The GEOS DAS does not, at the present time,

assimilate these observations, which may therefore be used as independent data to evaluate the

impact of rainfallfrPW assimilation on the analysis. The bulk of the comparison of the analysis

with CERES/TRMM observations will focus on January and June 1998.

Table 3 summarizes for January and June 1998 the spatial error statistics in OLR, OSR,

and the total outgoing radiation (TOR = OLR+OSR) relative to CERES products over all tropical
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locations where the month-mean rainfall has been modified by PCP+ TPW assimilation by more

than 1 mmd -1. Results show that both OLR and OSR are significantly improved as a result of

the improved precipitation: with tropical bias reductions in the range of 71-92%, and the std dev

reductions between 42 and 48%. An example of these improvements is shown in Fig. 3 for the

tropical OLR for January 1998. The error reductions in the TOR are somewhat less but still

substantial. Table 3c shows bias reductions of 20-27% and std dev reductions of 17%, reflecting

partial cancellations between OLR and OSR errors, which is not surprising as much of these

errors are cloud-related, as we will show later in this section.

The benefits of rainfall/TPW assimilation is not limited to raining regions. Table 4

summarizes the improvements in OLR, OSR, and TOR averaged over the tropics for January and

June 1998. The improved tropical OLR and OSR fields for June 1998 are shown in the two lower

panels in Fig. 4. Assimilating TMI and SSM/I rainrates and TPW yields reductions in the error

std dev of 41-44%, 30-39%, and 11-17% for OLR, OSR, and TOR, respectively. It also reduces

the tropical-mean bias by 71-76% in OSR and 18-27% in TOR. The apparent increase in the

tropical-mean bias in OLR is an artifact of the virtual elimination of the predominantly negative

OLR bias over precipitating areas (see Table 3a and Fig. 3), leaving the tropical-mean bias being

dominated by the positive biases in rain-free regions. The positive OLR bias in rain-free areas

reflects a dry humidity bias in the lower troposphere, which is diminished by assimilating TPW

observations, as evident in the comparison of the clear-sky OLR against CERES measurements

in Table 5. About half of the 10 Wm -2 bias in the clear-sky OLR can be traced to the use of a

high surface emissivity value in this version of the GEOS DAS, which has since been corrected

in later versions. A smaller bias in the control would mean greater fractional improvements. The

tropical bias in the clear-sky OSR is small in the GEOS control - about 1.0 Wm -2 for January and

-0.7 Wm -2 for June (not shown) - well within observation uncertainty; rainfall/TPW assimilation

has no significant impact on either its bias or error std dev.

Much of the errors in the GEOS OLR and OSR in the tropics are dominated by errors in

clouds, the foregoing results suggest that assimilating precipitation and TPW data significantly

improves the representation of clouds and cloud radiative effects in the analysis. This is

confirmed by comparing the "cloud radiative forcing" (the difference between the clear-sky

radiation and all-sky radiation) with CERES/TRMM estimates. The statistics in Table 6 show
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large reductionsin tropical-meanbiasesand std dev's in LW, SW, and net cloud forcing for

January and June 1998. These improvements are dramatic, as illustrated in Fig. 5 for the tropical

LW cloud radiative forcing. Clearly, improvements in precipitation has a direct impact on the

distribution of clouds, which, in turn, improves the OLR and OSR. In fact, the spatial pattern

correlations between the change in the January-mean tropical precipitation due to PCP+TPW

assimilation and those in OLR and OSR (not shown) are -0.70 and 0.70, respectively. Note,

however, that there is little correlation between the changes in precipitation and TOR due to large

cancellations between the LW and SW effects of clouds.

One benefit of assimilating rainfall and TPW data is that they reduce state-dependent

systematic errors in assimilation products. An example is given in Fig. 6, which compares the

tropical OLR error std dev's in the GEOS control with those in the PCP+TPW assimilation for

three averaging periods of 1, 5, and 30 days. The offsets between the control and PCP+TPW

assimilation results are nearly constant in all three cases - ranging from 8.2 to 9.5 Wm -2. Since

the tropical mean is removed from the error std dev analysis, they likely represent reductions of'

spatially-varying, state-dependent systematic errors. Systematic error reduction is important in

data assimilation since analysis algorithms typically assume unbiased observations and model

forecasts, even though systematic errors in the forecasting model and analyses can be of the same

order as the random components. Constraining the assimilation fields using precipitation and

TPW data can compensate for systematic model errors (see Sec. 6c) and promote internal

consistency of assimilation schemes.

The improvements in the outgoing radiation fluxes presented in this section derive mostly

from the better spatial pattern information in the TMI and SSM/I precipitation data and are not

sensitive to the intensity of the retrieved rainrates, as shown by the sensitivity experiments

described in Hou et al. (2000a).

d. Impact on tropical latent heating, large-scale motions, and upper-tropospheric humidity

A primary goal of assimilating tropical precipitation data is to improve the 4D structure

of latent heating and the associated large-scale circulation. A better latent heating distribution

should improve not only the clouds and vertical velocities in raining areas but also the subsidence
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in surroundingregions.Figure7 showsthat the time-meanchangesin the divergentwind at 200

hPa,theomega vertical velocity at 500 hPa, and the upper tropospheric humidity (UTH) resulting

from rainfall and TPW assimilation in January 1998 are tightly linked with the changes in

precipitation. The spatial pattern correlation between the January-mean precipitation anomaly

(Fig. 7a) and the vertical velocity anomaly at 500 hPa (Fig. 7b) is -0.89, and that between the

specific humidity anomaly at 400 hPa (Fig. 7c) and the vertical velocity anomaly at 500 hPa is

-0.62. However, the correlation between the positive (descending) omega velocity anomaly and

the negative specific humidity anomaly is -0.78. The drying of the upper troposphere is thus

directly linked to the enhanced subsidence resulting from rainfall/TPW assimilation. The changes

in humidity at 400 hPa should represent an improvement in the UTH, which is not easy to

confirm due to the lack of reliable observations. However, we can infer from the clear-sky OLR

results in Table 5 that rainfall/TPW assimilation has a positive impact on the large-scale

circulation and the UTH in clear-sky regions. In the next section, we further investigate the

impact of rainfall/TPW assimilation on the UTH using radiance data from TOVS channels that

are sensitive to the upper-level moisture.

e. Impact on upper-tropospheric moisture and temperature inferred from TOVS radiances

TOVS brightness temperature observations are used to assess the impact of rainfall/TPW

assimilation on GEOS moisture and temperature analyses. Synthetic TOVS brightness

temperatures were computed using GEOS temperature and humidity analyses and compared with

brightness temperatures derived from the clear and cloud-cleared infrared radiances from the

TOVS High-resolution Infrared Radiation Sounder 2 (HIRS2) and Microwave Sounding Unit

(MSU). The HIRS cloud-cleared brightness temperatures were produced as a part of the

Pathfinder Path A data set (Susskind et al. 1997). The procedure we used is described in Hou et

al. (2000a). The absolute uncertainty of the synthetic minus observed brightness temperatures is

estimated to be approximately 2 K, due to biases in observations and the radiative transfer model,

which were not removed. Instead, we focus on the spatial structure of the brightness temperature

residuals exceeding 2 K and the relative differences between the GEOS control and PCP+TPW

assimilation.
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In this section we examineresultsfor 2 channels:The HIRS2 12 (6.7 _m), which is

sensitive to the UTH and the MSU 2, which is sensitive to the mid-tropospheric temperature.

HIRS2 12 has a peak sensitivity to UTH between about 300 and 500 hPa depending on local

conditions. Figure 8 compares the synthetic HIRS2 12 and MSU 2 brightness temperatures with

observations. The synthetic HIRS12 brightness temperature from the GEOS control shows a cold

bias, reflecting a moist bias in UTH throughout the tropics. The difference in synthetic brightness

temperature in the bottom left panel shows that rainfall/TPW assimilation leads to "warming"

over much of the tropics and reductions of 6% in the bias and 11% in the error std dev w.r.t.

observations. The spatial correlation between the positive synthetic brightness temperature

anomaly and the negative specific humidity anomaly at 400 hPa (Fig. 7c) is -0.81. This is a result

of an improved vertical motion field associated with improved precipitation in the assimilation,

as shown earlier.

The MSU 2 has a relatively broad sensitivity to tropospheric temperature that peaks near

600 hPa and has a small sensitivity to surface emission. In Fig. 8 the top right panel shows that

the synthetic MSU 2 brightness temperatures in the GEOS control are higher than the observed

values, consistent with a warm bias in the temperature analysis. However, the differences may

not be significant since they are less than the estimated uncertainty of 2 K. We can to some

extent remove this ambiguity by examining the difference in synthetic brightness temperatures

between two assimilation runs. The bottom right panel in Fig. 8 shows that the impact of

rainfall/TPW assimilation is to reduce the warm biases by 0.05 to 0.2 K over large portions of

the tropics, which is likely significant given the broad weighting function. Statistics show that

rainfall/TPW assimilation reduces the tropical-mean bias by 4% and the error std dev by 7%

w.r.t, the observed MSU 2 brightness temperatures.

6. Impact on Instantaneous Fields and Short-Range Forecasts

Forecast skills that result from an improved initial condition are used to assess the impact

of rainfall and TPW assimilation on the instantaneous prognostic fields (i.e., temperature, winds,

moisture, and surface pressure) in the GEOS analysis.
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a. 5-day ensemble forecast

We performed parallel ensemble forecasts initialized with GEOS analyses with and

without TMI and SSM/I data. Each ensemble consists of 12 independent samples of 5-day

forecasts with initial conditions 5 days apart taken from two months of assimilation. For forecast

verification, two analyses were used: (i) the operational analysis from the European Center for

Medium-Range Weather Forecasts (ECMWF) and (ii) the average of the GEOS control and

PCP+TPW analyses. Although the PCP+TPW analysis compares better with satellite observations

than the control, as shown in Sec. 5, using the average of two analyses for verification removes

biases associated with the initial conditions.

Figure 9a shows the rms error reductions in tropical 5-day forecasts of the 500 hPa

geopotential height. Forecasts initialized with the PCP+TPW analysis yields smaller rms errors

regardless which of the two verification analyses was used. Student's t test confirms that the

forecast error reductions in the tropics are significant at the 99% level beyond 1 day in either

case. In the extratropics, there was no statistically significant impact on the 5-day forecast.

Rainfall and TPW assimilation also reduces errors in the divergent component of

horizontal winds in the tropics, as shown for the 200 hPa divergent meridional wind in Fig. 9b.

The improvements are significant at the 99% level within the first 2 days, as verified against the

ECMWF analysis. Figure 9c shows that rainfall/TPW assimilation also reduces the rms errors in

the OLR in the first 2 days, as verified against the CERES/TRMM data, indicative of improved

cloud fields, as discussed in Sec. 5.

b. Precipitation forecast

Figure 10 shows the impact of TMI and SSM/I rainfall/TPW assimilation on ensemble

tropical precipitation forecast. The ensemble consisted of 20 cases of 3-day forecasts with initial

conditions 3 days apart from the December 97 to January 98 period. Figure 10a shows that

rainfall/TPW assimilation improves spatial correlation of the precipitation forecast with the GEOS

PCP+TPW precipitation analysis. The greatest improvements occur within the first 24 hours,

where the correlation coefficients are increased from 0.45 in the control to the 0.9-0.6 range. This
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resultis similar to what one obtainswith physical initialization (Krisknamurti et al. 1994).The

forecastimprovementdiminisheswith the leadtime presumablybecausethe influenceof a better

initial condition is inherently limited by the growth of model errors. The improved spatial

correlationsshownin Fig. 10aarestatisticallysignificantat the 99% level for 66 forecasthours.

By contrast,the reductionsin the rms forecasterrors shownin Fig. 10b are significant only

within the first 24 hours. Rainfall/TPW assimilation thus appearsto be more effective in

improving the spatialpatternsthan the amplitudesof precipitationforecasts.

To investigatethe local impact of rainfall/TPW assimilation,we examinedthe 6-hr

average"observationminus forecast"(O-F) residualsat modelgridboxeswhereTMI or SSM/I

observationsare availableat both forecastverification times and the initial times from which

forecastsweremadewith prognosticfields that had beenmodifiedby rainfall/TPW assimilation

in thepreviousassimilationcycle.From the same20 forecastsusedfor Fig. 10,we constructed

6-h O-F ensemblesconsistingof individual forecastsat those locationswith improved initial

conditionsratherthanaveragedoverall pointsin thetropics.In Table7 the 6-h O-F precipitation

forecaststatisticsfor thefirst 45hoursshowthatforecastsfrom the PCP+TPWassimilationhave

much smaller biasesfor leadtimes longer 3 hours. (Resultssignificant at the 99% level are

italicized.)Thelackof improvementsin the first few hoursis consistentwith that rainfall/TPW

assimilationis effectivein reducingsystematicerrors,asdiscussedSec.5c, in which casethere

maybe no detectableimprovementin the initial periodwhenthe forecasterrorsaredominated

by uncorrelatederrors,whichdecaywith time. By contrast,the fractional reductionsin the error

stddev,thoughsignificant,aremarginallysmall. This is due in part to that the largestd dev of

the sub-sampledensemblesbasedon the spatially-limited, time-varying satellite observations

availablein a 6-hwindow.Nevertheless,it is significantthat the forecastsarenot degradedsince

internallyconsistentuseof observationsdictatesthat the improvedanalysisshould improve,or

at the very least,doesnot adverselyaffect forecast.

b. 6-hr observation minus forecast residuals

We computed the monthly-mean biases and error std dev's of the 6-hr O-F residuals for

winds, geopotential height, and specific humidity averaged over tropical rawinsonde locations for
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theGEOScontrol andPCP+TPWruns.Statisticaltestsshowthat rainfall andTPW assimilation

affectsmainly the O-F residualsfor moisture but not the height or winds. Table 8 gives the

moistureO-F biasesandstd dev'stogetherwith the "null hypothesis" probabilities that they are

the same in the two cases. Results indicate that PCP+TPW assimilation decreases the std dev's

of the moisture O-F residual between 300 and 500 hPa at the 1% probability level. The only

significant change in bias occurs between 700 and 850 hPa, corresponding to a downward shift

of the zero-bias level in the PCP+TPW case. Overall, these O-F's show that TMI+SSM/I

rainfall/TPW assimilation reduces the moisture O-F residuals with no adverse impact on other

fields, which is consistent with the TOVS brightness temperature results discussed in Sec. 5d.

7. Summary and discussion

This study shows that assimilating rainfall and TPW estimates derived from microwave

instruments is very effective in improving the hydrological cycle and atmospheric energetics in

the GEOS analysis - even with the limited observations available from a single TMI and 2 SSM/I

instruments. It demonstrates that the microwave-based rainfall estimates, at their current levels

of accuracy, are more reliable than model-based analyses, as substantiated using independent

metrics based on the CERES/TRMM TOA radiation measurements. Results show that

assimilating the 6-h averaged tropical TMI and SSM/I rainrates and TPW data reduces the state-

dependent, systematic errors in assimilated data products. In particular, rainfall assimilation

improves distributions of clouds and radiation in convective regions, as well as the latent heating

and the associated large-scale circulation in the tropics, while TPW assimilation reduces moisture

biases to improve the longwave radiation in clear-sky regions. An improved large-scale motion

field also improves the upper tropospheric humidity, which is verified by comparing GEOS

synthetic brightness temperatures for moisture-sensitive TOVS channels with observations.

Ensemble forecasts initialized with GEOS analyses with TMI and SSM]I rainfall and TPW

data yield better 5-day forecasts of the 500 hPa geopotential height, and better 2-day forecasts

of the 200 hPa divergent winds in the tropics. These forecast improvements indicate that

rainfall/TPW assimilation improves not only the time-mean fields but also the instantaneous

prognostic fields in the analysis. Rainfall/TPW assimilation also leads to improved 3-day
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ensembleforecastsof precipitation,with the greatest improvements occurring in the first 24

hours, during which time the spatial correlations with observation-driven precipitation analyses

increased from 0.45 in the control to the 0.9-0.6 range. This high correlation is not sustained

beyond 1 day presumably because that improvements due to improved initial conditions are

inherently limited by the growth of model errors. However, it is possible to achieve better results

beyond 1 day using the multi-model super-ensemble approach used by Krishnamurti et al. (2000)

to reduce the influence of systematic model errors. Examination of the 6-hr O-F statistics against

TMI and SSM]I observations show that rainfall/TPW assimilation reduces spatial biases by

roughly 50% in precipitation forecasts for lead times up to 3 days.

This work shows that assimilating TMI and SSM/I rainfall and TPW observations can

substantially improve assimilated data even in a sub-optimal application without detailed error

specifications. It may be possible to make even more effective use of these data through use of

background and observation error covariance models. The results of this study provide a baseline

for evaluating the performance of error covariance models. Rainfall/TPW assimilation

experiments using the generalized 1 + 1D rainfall/TPW assimilation scheme will be reported in a

subsequent paper.

While rainfall/TPW assimilation provides better initial conditions for short-range forecasts,

it is worth noting that the improvements are even greater in the monthly-mean fields. In the

presence of biases and other errors of the forecast model, forecast skills are not necessarily an

accurate predictor of the improvements that can be achieved in time-averaged assimilation fields.

These results suggest that assimilating rainfall and TPW data using the 1+ 1D scheme in the IAU

framework can compensate for the systematic errors present in the forecast model. The analysis

increments induced by rainfall and TPW data may be used to identify and correct the state-

dependent errors in the forecast model using the empirical procedure described in DelSole and

Hou (1999).

The present results are based on observations updated in 6-h assimilation cycles. The

state-of-the-art assimilation systems, including the next-generation GEOS DAS, are evolving

towards a time-continuous assimilation strategy to make better use of asynoptic observations from

satellite platforms. Currently global analyses from different assimilation systems all suffer, to

varying degrees, errors in clouds and precipitation in the tropics. This study suggests that
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precipitation and TPW assimilation offers an effective means by which to improve the

hydrologicalcycleandtherelatedclimateparametersin global analyses.Basedon theseresults,

we expectthat the proposedGlobal PrecipitationMission to measurerainfall at high temporal

and spatial resolutioncan provide a key observationtype that will significantly improve the

quality and utility of assimilatedglobal datasetsfor climate analysisand weatherforecasting

applications.
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Table 1

Monthly-mean spatial statistics of GEOS tropical precipitation against GPCP satellite-gauge estimate

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (mm d1)

0.7 -0.1

0.8 -0.47 *

0.9 -0.51 *

std dev

3.24

2.24

1.92

(nma d1)

-31%

-41%

See text for the apparent increase in bias.

June 1998

AC bias (mm dl)

0.6 0.75 -

0.8 0 *

0.9 -0.4 *

std dev (mmd _)

3.67

2.28 -38%

1.92 -48 %

Table 2

Monthly-mean spatial statistics of GEOS TPW over tropical oceans against Wentz estimate

January 1998 June 1998

GEOS Control

PCP Assimilation

PCP+TPW Assim.

AC

0.9

1

1

bias (g cm 2)

-0.3

-0.2 -36%

0 -97%

std dev (g cm -2)

0.45

0.43 -4%

0.09 -80%

AC bias (g cm 2)

1 -0.3

1 -0.2 -44%

1 0 -99%

std dev (g cm z)

0.36

0.43 -20%

0.091 -75%
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Table 3a

Monthly-mean spatial statistics of GEOS OLR against CERES/TRMM ERBE-Iike ES-4 estimate over

tropical locations where the monthly-mean rainfall has been modified by more than 1 mm dt

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Wm 2)

0.5 -18

0.8 -5.6 -70%

0.9 2 -83%

std dev (Wm z)

28.2

16.3 -42%

14.7 -48%

June 1998

AC bias (Wm 2)

0.5 -24

0.8 -5.5 -78%

0.8 1.82 -92%

std dev (Wm -2)

3O.4

17.9 -41%

17.3 -43%

Table 3b

Monthly-mean spatial statistics of GEOS OSR against CERES/TRMM ERBE-like ES-4 estimate over

tropical locations where the monthly-mean rainfall has been modified by more than 1 nun d_

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Wm 2)

0.5 32

0.8 18.9 -41%

0.9 9.39 -71%

std dev (Wm 2)

33.6

20.2 -40%

19.5 -42%

June 1998

AC bias (Win 2)

0.5 39.3 -

0.8 18.8 -52%

0.8 9.19 -77%

std dev(Wm 2)

39.4 -

22.7 -43%

2O.7 -48%

Table 3c

Monthly-mean spatial statistics of GEOS total outgoing radiation against CERES/TRMM ERBE-like ES-4

estimate over tropical locations where the monthly-mean rainfall has been modified by more than 1 mm d -_

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Win 2)

0.5 15.2 -

0.6 13.7 -10%

0.7 12.2 -20%

std dev (Win 2)

18.5

16.3 -12%

15.3 -17%

June 1998

AC bias (Wm z)

0.5 15.1 -

0.7 3.73 -75%

0.6 11 -27%

std dev (Wm 2)

20.9

18.3 -12%

17.3 -17%
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Table 4a

Monthly-mean spatial statistics of GEOS tropical OLR against CERES/TRMM ERBE-Iike ES-4 estimate

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Wm 2)

0.7 2.75

0.9 7.21 *

0.9 10.8 *

*See text for the apparent increase in bias.

std dev (Win -2)

26.1

17.9 -31%

14.5 -44%

June 1998

AC bias (Wm-')

0.6 -2.72

0.9 4.53 *

0.9 7.84 *

std dev (Win 2)

28.7

17.5 -39%

15.1 -41%

Table 4b

Monthly-mean spatial statistics of GEOS tropical OSR against CERES/TRMM ERBE-like ES-4 estimate

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Wm 2)

0.7 16.1

0.8 10.8 -33%

0.8 4.67 -71%

std dev (Wm 2)

32

23.9 -25%

22.5 -30%

June 1998

AC bias (Wm-')

0.6 19.9

0.7 11.7 -41%

0.8 4.69 -76%

std dev (Wm 2)

36.6

25.4 -30%

22.3 -39%

Table 4c

Monthly-mean spatial statistics of GEOS tropical total outgoing radiation
against CERES/TRMM ERBE-like ES-4 estimate

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Wm -2)

0.6 18.9

0.7 18 -4%

0.7 15.5 -18%

std dev (Wm "2)

21.7

20.3 -7%

19.3 -11%

June 1998

AC bias (Wm z)

0.7 17.2

0.8 9.22 -46%

0.8 12.5 -27%

std dev (Wm 2)

23.4

21.2 -10%

19.4 -17%
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Table 5

Monthly-mean spatial statistics of GEOS clear-sky OLR over tropical oceans

against CERES/TRMM ERBE-iike ES-4 estimate

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Win 2)

0.8 10.3 -

0.8 9.56 -7%

0.9 8.56 -17%

std dev (Wm "2)

5.58

5.45 -2%

4.66 -17%

June 1998

AC bias (Win 2)

0.8 11.4 -

0.8 9.78 -14%

0.9 8.55 -25%

std dev (Wm 2)

4.1

4.22 +3%

3.06 -25%
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Table 6a

Monthly-mean spatial statistics of GEOS LW cloud forcing over tropical oceans

against CERES/TRMM ERBE-like ES-4 estimate

GEOS Control

PCP Assimilation

PCP+TPW Assim.

January 1998

AC bias (Win 2)

0.7 985

0.9 5.4 -37%

0.9 -0.6 -51%

std dev ('_m "2)

22.6

14.3 -37%

11.1 -51%

June 1998

AC bias (Wm 2)

0.7 14.3 -

0.8 6.54 -54%

0.8 0.77 -95%

std dev (Wm _)

27.8

15.3 -45%

12.8 -54%

GEOS Control

PCP Assimilation

PCP+TPW Assim.

Table 6b

Monthly-mean spatial statistics of GEOS SW cloud forcing over tropical oceans

against CERES/TRMM ERBE-Iik,

January 1998

AC bias (Win 2)

0.4 -28 -

0.5 -18 -36%

0.6 - 11 -62%

std dev(Wm 2)

38.2 -

28.3 -26%

25.8 -32%

ES-4 estimate

June 1998

AC

0.3

0.5

0.5

bias (Wm 2)

-32.2

-19.6 -39%

-11.8 -63%

std dev (Win z)

42.6

28.6 -33%

24.6 -42%

GEOS Control

PCP Assimilation

PCP+TPW Assim.

Table 6c

Monthly-mean spatial statistics of GEOS net cloud forcing over tropical oceans

against CERES/TRMM ERBE-lik_

January 1998

AC bias (Vgm "2)

0.4 -16

0.5 -13 -19%

0.5 -9.2 -41%

std dev (Wm 2)

24.5

22.9 -6%

21.9 -11%

ES-4 estimate

June 1998

AC bias (Wm -2)

0.4 -13.6

0.4 -11.7 -14%

0.5 -7.12 -48%

std dev (Wm -2)

24.8

23.9 -4%

20.5 -17%
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Table 7

Local impact of rainfall and TPW assimilation on 6-h O-F statistics

for tropical precipitation forecasts verified against TMI+SSM/I observations

Forecast Time

Sample Size

Control

PCP+TPW Assim.

% change

t prob

Control

PCP+TPW Assim.

% change

F prob

3 h 9 h 15 h 21 h 27 h

42160 44762 42541 52870 42272

bias

0.535 0.882 0.758 1.304 1.210

0.708 0.485 0.014 0.477 0.480

+32% -45% -98% -63% -60%

0.07 le 4 4e" le -16 5e Is

14.45 15.34

13.35 15.16

-7.6% -1.2%

Ie 16 0.012

error std dev

15.02 16.32

14.90 16.13

-0.8% -1.2%

0.078 0.009

13.69

13.39

-2.2%

3e -6

33 h 39 h 45 h

45266 42387 49920

1.450 1.184 1.356

0.814 0.588 0.950

-44% -50% -30%

ie-W 4e-9 le-5

15.02 14.87 14.85

14.76 14.63 14.76

-1.7% -1.6% -0.6%

2e _ 0.001 0.180

Pressure

(hPa)

Table 8

Specific humidity O-F residuals against rawinsonde data (30°S to 30°N, January 1998)

bias error std dev

Control PCP+TPW

300 -0.0840 -0.0771

400 -0.1566 -0.1196

t-test prob

0.2601

0.0363

500 -0.1470 -0.1295 0.5081

700 0.0332 -0.1905 7.462 x 10 s

850 _559I _2568

1000 -0.9933 -0.8497

4.492 x 10 .5

0.4078

Control PCP+TPW F-test prob

9.811 x 10 -s0. 0817 O.0380

0.2243 0.1670 1.571 x 10 -e

0.3464 0.2795 3.342 x 10 -_

0.6870 0.6400 0.2368

1.2777 1.1523 0.0945

1.39491.3697 0.8385
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Figure captions

Figure1. (a)Six-houraveragedGPROFrainratesbasedon observationsfrom the TMI and F13

and F14 SSM]I instruments at 0000 UTC on 23 January 1998. The satellite observation tracks

are shaded. The light shading denotes either no precipitation or rainrates less than 2 mm day -_.

(b) Difference between GPROF rainrates and precipitation from the GEOS control sampled at

TMI and SSM/I observation locations. Shown at the top of the panel are tropical-mean spatial

statistics of the GEOS precipitation w.r.t, the TMI and SSM/I observations. (c) Same as (b) but

for the assimilation using TMI and SSM/I rainrates without TPW retrievals. The percentage error

reduction relative to the control is given in parentheses. (d) Same as (c) but for the assimilation

using TMI and SSM/I rainrates in conjunction with TPW data.

Figure 2. (a) Monthly-mean combined satellite-gauge GPCP precipitation estimate for January

1998. (b) Difference between the GPCP estimate and precipitation from the GEOS control, with

tropically-averaged spatial correlations and error statistics. (c) Same as (b) but for the TMI+SSMI

PCP assimilation. The percentage change in error std dev relative to the control is given in

parentheses. (d) Same as (c) but for the TMI+SSMI PCP+TPW assimilation.

Figa]re 3. OLR comparison against CERES/TRMM measurements at locations where precipitation

has been modified by more than 1 mmd -_ for January 1998. (a) Difference between the GEOS

control and CERES]TRMM, with tropical-mean spatial correlations and error statistics. (b) Same

as (a) but for TMI PCP assimilation. The percentage changes in bias and error std dev relative

to the control are given in parentheses. (c) Same as (b) but for the TMI+SSMI PCP assimilation.

(d) Same as (c) but for the TMI+SSMI PCP+TPW assimilation.

Figure 4. Impact of rainfall/TPW assimilation on the monthly-mean tropical precipitation, TPW,

OLR, and OSR as verified against observations, for June 1998. Left panels show errors in the

GEOS control assimilation. Right panels show the corresponding errors in the TMI+SSM]I

rainfall and TPW assimilation. Percentage changes relative to errors in the control are given in

parentheses. See text for discussion of bias values accompanied by an asterisk.

32



Figure 5. Improvements in the longwave "cloud radiative forcing" as verified against

CERES/TRMM observations for January and June 1998. Percentage reductions in the spatial bias

and error std dev relative to the control are given in parentheses.

Figure 6. Tropically-averaged error std dev in OLR as a function of averaging periods of 1, 5,

and 30 days for the first 30 days in January 1998.

Figure 7. (a) Change in precipitation between PCP+TPW assimilation and the control for January,

1998. Superimposed are the changes in the horizontal divergent wind vector at 200 hPa. (b)

Change in the omega velocity at 500 hPa. The anomaly correlation between this and changes in

precipitation shown in (a) is -0.89. (c) Changes specific humidity at 400 hPa. The anomaly

correlation between this and changes in 500 hPa omega velocity is -0.62.

Figure 8. Comparison of GEOS synthetic HIRS2 channel 12 and MSU channel 2 brightness

temperatures with observations for January, 1998. Percentage reductions in the spatial bias and

error std dev relative to the control are given in parentheses.

Figure 9. Impact of TMI+SSM/I rainfall and TPW assimilation on 5-day ensemble forecasts. (a)

Forecast rms error in tropical geopotential height at 500 hPa, as verified against the ECMWF

analysis and the GEOS TMI+SSMI PCP+TPW analysis. (b) Same as (a) except for the 200 hPa

divergent meridional wind verified against the ECMWF analysis. (c) Same as (b) except for the

OLR verified against the CERES/TRMM observations.

Figure 10. Impact of TMI+SSM/I rainfall and TPW assimilation on 3-day ensemble precipitation

forecasts. (a) Spatial correlation with tropical precipitation from the GEOS TMI+SSMI

PCP+TPW assimilation. (b) The corresponding rms error.
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OLRImprovementsAssociatedwithRainfallChanges> I mmd"

at TMI+SSM/I Observotlon Locations: January 1998

a) GEOS(CNTRL) Minus CERES/TRMM
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GEOS Control Assimilation vs Observations

(June 1998)

Precipitation: GEOS(CNTRL) Minus GPCP Sat-Gouge
AC - 0.60 Bias = 0.75 Std Oev - 3,67

TPW: GEOS(CNTRL) Minus TMI+SSM/I Wentz
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Impact of Rainfall and TPW Assimilation on LW Cloud Radiative Forcing

i (January 1998) (June 1998)

GEOS(CNTRL) Minus CERESp'RMM GEOS(CNTRL) Minus CERESfTRMkl
AC ,= 0.72 Bias = 9.85 Std Oev = 22.6 AC = 0.71 Bias =- 14.3 Std Day == 27.5 Win_=

i :  iill IL
20N ............ '30

IM I_ t "

-15

Ea_ ¢ -3o

GEOS(TMI-PSSMi PCP+TPW) Minus CERES/'TRMM GEOS(TMI+SS,=MI PCP+TPW) Minus CERES/TRMM
AC = 0.89 BioJ =, -0.62(-94_) Std Dev = 11.1(-51_) AC =, 0.85 Bias 0.77(-95_) Std Dev 12.8(-54_) m.=

_" ........................................_ _[_,il":: ...... 2o._..................... ' ........,,_÷ _':........... .....! ...... g_, •....

,_ .. ' .- ,=J_ ._..4.i..._Pl.,_,.:._,...,..._._..:....... _.-: ;.--.-I -so

I LONGITUDE LONGITUDE



i

)
1
i

i
!

I i"

i-

i

i i i

i

!

--=

|

i ,
i

6O

5O

A

_-'40

121

f,
30

uJ
cc
._1
O

2O

10

OLR ERROR STD DEV AS A FUNCTION OF AVERAGING TIME

TROPICS (30S to 30N) JANUARY 1998 CERES/'FRMM VERIFICATION

• ' ' • I ' ' • I • • ' I • • " " I • • ' " I ' ' ' '

(3 - _ 1-DAY MEAN (CNTRL)
H 1-DAY MEAN _MI+SSMI PCP+TPW)

A---_5-DAY MEAN (CNTRL)
_-_A5-DAY MEAN (TMI+SSMI PCP+TPW)

- -K_30-DAY MEAN (CNTRL)

4)'_-4),30-DAY MEAN (TMI+SSMI PCP+TPW) 1

/
,Sb o

0

5 i 0 15 20 25 30

TiME (DAY)



Changes in Precipitation, Large-Scale Motions, and Humidity

GEOS(TMI+SSMI PCP+TPW) Minus GEOS(CNTRL): January Jgg8
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